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Abstract

Logit-based knowledge distillation (KD) is commonly used
to mitigate catastrophic forgetting in class-incremental learn-
ing (CIL) caused by data distribution shifts. However, the
strict match of logit values between student and teacher mod-
els conflicts with the cross-entropy (CE) loss objective of
learning new classes, leading to significant recency bias (i.e.
unfairness). To address this issue, we rethink the overlooked
limitations of KD-based methods through empirical analysis.
Inspired by our findings, we introduce a plug-and-play pre-
process method that normalizes the logits of both the student
and teacher across all classes, rather than just the old classes,
before distillation. This approach allows the student to focus
on both old and new classes, capturing intrinsic inter-class
relations from the teacher. By doing so, our method avoids
the inherent conflict between KD and CE, maintaining fair-
ness between old and new classes. Additionally, recognizing
that overconfident teacher predictions can hinder the transfer
of inter-class relations (i.e., dark knowledge), we extend our
method to capture intra-class relations among different in-
stances, ensuring fairness within old classes. Our method in-
tegrates seamlessly with existing logit-based KD approaches,
consistently enhancing their performance across multiple CIL
benchmarks without incurring additional training costs.

Code — https://github.com/Zi-Jian-Gao/Maintaining-
Fairness-in-LKD-for-CIL

Introduction
Class-incremental learning (CIL) (Masana et al. 2022) aims
to enable a network to incrementally learn new classes while
accurately classifying all previously encountered classes.
Unlike conventional training paradigms, CIL requires deep
neural networks to incorporate new data without losing
historical knowledge, eliminating the need for retraining
from scratch—an essential feature for practical applications.
The primary challenge in CIL is overcoming catastrophic
forgetting (CF) (McCloskey and Cohen 1989), where the
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Figure 1: Vanilla KD paradigm in CIL.

model’s performance on old classes significantly degrades
after learning new ones due to data distribution shifts.

Knowledge Distillation (KD) (Hinton et al. 2015) is a way
to alleviate forgetting, where the old model (teacher) con-
solidates knowledge into the new model (student). This ap-
proach has been extensively adopted in CIL (Castro et al.
2018; Li and Hoiem 2017; Dhar et al. 2019). As depicted in
Figure 1, the vanilla KD-based method (e.g., LwF (Li and
Hoiem 2017)) optimizes both the KD loss and the cross-
entropy (CE) loss simultaneously. However, KD enforces
an exact match between the teacher’s and student’s logits
for old classes, both in terms of value range and variance.
For example, if the ground truth label for the second class is
0, but the teacher’s prediction probability is 0.9, these opti-
mization goals conflict, making reconciliation difficult. This
conflict diminishes the positive impact of KD (Zhao et al.
2020; Liu et al. 2024) and results in recency bias (Masana
et al. 2022; Wang et al. 2024), where the model increasingly
favors classifying instances into new classes.

To investigate this limitation, we conducted empirical
studies on the model’s stability in vanilla KD through con-
tinual evaluation at every iteration. We observed a signifi-
cant transient forgetting during task transitions, followed by
a recovery phase, as shown in Figure 2 (b), also referred
to as the stability gap (Lange, van de Ven, and Tuytelaars
2023). We analyzed this phenomenon in two aspects: tem-
porary forgetting and partial recovery, using gradient-based
and empirical analyses. Our findings revealed two critical
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issues: (1) focusing exclusively on old logits during distilla-
tion leads to severe forgetting during early transitions, and
(2) the exact match requirement in KD loss hampers the re-
covery of forgotten knowledge in later transitions. As a re-
sult, KD-based approaches struggle to effectively learn from
new tasks while mitigating forgetting.

Motivated by these insights, we developed a novel pre-
process method for KD that effectively maintains fairness
between old and new classes. This method replaces the ex-
act match with a semantically invariant inter-class match,
allowing the student’s logits to vary in range and variance
while preserving the semantic relationships of the teacher’s
old class logits and enabling the student to learn new tasks.
Additionally, recognizing that overconfident teacher predic-
tions can hinder the student’s ability to capture intrinsic rela-
tions among old classes (i.e., dark knowledge), we introduce
intra-class relation distillation, which further ensures fair-
ness within old classes, enabling the student to learn equally
from each class. In summary, the main contributions include:
• We critically reassess the overlooked sub-optimality of

vanilla KD through comprehensive empirical evaluations
and analyses, revealing the conflict between learning
and anti-forgetting caused by the neglected interplay and
rigid exact match-based KD.

• Building on these findings, we propose a plug-and-play
pre-process method that employs a relaxed, semantically
invariant match to capture intrinsic inter-class relations
and ensure fairness between old and new classes.

• To address the issue of overconfident teacher predictions,
we introduce an intra-class loss by distilling the teacher’s
predictions for each old class across multiple instances,
ensuring fairness within old classes.

• Extensive experimental results demonstrate that the pro-
posed method consistently enhances the performance
of various KD-based CIL approaches across multiple
benchmarks and settings, without incurring additional
training costs.

Related Work
In this section, we review key related works in KD and CIL
and discuss how our research aligns with the advancements.

Knowledge Distillation (KD) is a widely adopted tech-
nique for transferring knowledge from large, complex mod-
els (teachers) to smaller, more efficient models (students).
Initially introduced by Hinton et al. (Hinton et al. 2015), KD
aims to transfer the ”dark knowledge” embedded in teacher
models to students, often leading to superior performance
compared to training models directly on the dataset (Du et al.
2020). In recent years, various KD methods have been de-
veloped to enhance distillation performance (Tung and Mori
2019; Huang et al. 2022; Chi et al. 2023; Sun et al. 2024).

In the context of CIL, KD is widely used due to its sim-
plicity and effectiveness in mitigating forgetting (Li and
Hoiem 2017; Dhar et al. 2019; Wu et al. 2019; Rebuffi et al.
2017; Zhao et al. 2020; Douillard et al. 2020; Zhu et al.
2021c,b). KD-based CIL methods can be broadly catego-
rized into two types: feature-based and logit-based. Feature-
based KD is typically used in exemplar-free CIL scenarios

to preserve feature distributions and utilize prototypes for
pseudo feature replay (Zhu et al. 2021b,a,c). Logit-based
KD is commonly applied in regularization-based (Li and
Hoiem 2017) and replay-based (Rebuffi et al. 2017; Zhao
et al. 2020; Douillard et al. 2020) CIL methods, aligning the
output logits of the old and new models.

One major challenge in KD-based CIL is overcoming re-
cency bias (Masana et al. 2022; Wang et al. 2024), where
the model increasingly classifies instances into new classes.
To address this, the BiC (Wu et al. 2019) introduces a bias
correction stage after distillation, adjusting the bias in the
fully connected layer using a validation set. Alternatively,
WA (Zhao et al. 2020) employs a weight aligning strategy
to correct biased weights post-training without requiring ad-
ditional training. Another approach by Liu et al. (Liu et al.
2024) uses placebos from an unlabeled image stream instead
of new samples to distill and preserve old knowledge, thus
avoiding the conflict between CE loss and KD loss.

Despite the progress in logit-based distillation, the under-
lying mechanism by which KD contributes to recency bias
and strategies to mitigate this bias have not been fully ex-
plored. This paper addresses this gap by investigating the
fundamental mechanism of KD and introducing a novel pre-
process to reduce recency bias and maintain fairness be-
tween old and new classes in KD-based CIL methods.

Preliminary Analysis
Background and Notation
We start with the key notations of the KD-based baseline
(i.e., LwF). In an incremental task with O old classes and N
new classes, the goal is to train a model to classify across all
O + N classes. Let {(x1, y1) , . . . , (xM , yM )} denotes the
samples from the new classes, where M is the number of
samples, and xi and yi are the input data and target label, re-
spectively. During incremental training, the student model
fS learns from the new samples using classification loss
LCE while maintaining stability with KD loss LKD from
the teacher model fT , trained in the previous tasks.

Given an input (x, y), let Ẑ(x) = (ẑ1, . . . , ẑO) and
Z(x) = (z1, . . . , zO, zO+1, . . . , zO+N ) represent the output
logits of the teacher and student models, respectively. The
cross-entropy (CE) loss for learning is defined as:

LCE(x, y) = −
O+N∑
i=O+1

δi=y log (pi(x)) , (1)

where δy=j is an indicator function for the true label yi,
and pi(x) is the student prediction probability for the cor-
rect class. Meanwhile, the softmax function converts the old
class logits to the probabilities q̂(x) and q(x) for distillation,
and the i-th item is calculated by

q̂i(x) =
eẑi/τ∑O
j=1 e

ẑj/τ
, qi(x) =

ezi/τ∑O
j=1 e

zj/τ
,

where τ is the temperature scalar. It is worth noting that, in
CIL, cross-entropy and Kullback-Leibler (KL) Divergence
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Figure 2: Detailed performance analysis with different KD mechanisms.

are both widely used for calculating the KD loss LKD. The
CE-based KD loss is given by

LCE (q̂(x), q(x)) = −
O∑
i=1

q̂i(x) log (qi(x)) . (2)

And, the KL-based KD loss is given by

LKL (q̂(x)∥q(x)) = τ2
O∑
i=1

q̂i(x) log

(
q̂i(x)

qi(x)

)
. (3)

It is important to note that they are nonequivalent due to the
negative entropy term of teacher prediction q̂(x). Finally, the
overall loss, combining the cross-entropy loss and the KD
loss, is defined as

L = LCE(x, y) + LKD(Ẑ(x), Z(x)), (4)

KD-based Overlooked Sub-optimality
To explore the sub-optimality in KD-based CIL, we con-
ducted comprehensive experiments on LwF using both CE-
based and KL-based distillation, referred to as LwFCE

and LwFKL, respectively. These experiments were per-
formed under the standard incremental setting—training
from scratch—using the CIFAR-100 dataset (Krizhevsky
and Hinton 2009). Specifically, we equally divided the
classes into five tasks and continuously evaluated the
model’s accuracy on tasks T0 and T1 at each iteration.

In Figure 2 (b), we present the accuracy curves for the
model on the first two tasks T0 and T1across the training of
the subsequent four tasks of a total of five tasks. For clar-
ity, we have omitted the accuracy curve during the initial
task T0 training as the three baseline models exhibit iden-
tical performance. The vertical bars mark the transition be-
tween tasks. It’s obvious that both LwFCE (blue line) and
LwFKL (red line) exhibit significant temporary forgetting
during task transitions, followed by partial recovery. This
phenomenon, known as the stability gap (Lange, van de Ven,
and Tuytelaars 2023), highlights the transient forgetting of
old knowledge when learning new tasks.

Notably, LwFKL outperforms LwFCE on task T0 in both
aspects. This advantage is due to KL loss’s ability to mea-

sure the divergence between the softened probability dis-
tributions of the teacher and student models, ensuring the
transfer of fine-grained information. In contrast, CE loss
focuses solely on matching class probabilities, potentially
overlooking the rich information in the relative probabilities
of other classes. This limitation makes CE loss less effec-
tive at capturing nuanced differences between the teacher’s
and student’s outputs, leading to more severe forgetting and
hindering knowledge recovery.

Gradient Analysis. However, the maximum forgetting in
LwFKL for task T0 remains significant, with accuracy drop-
ping from around 80 to 40 when learning task T1. This in-
evitable forgetting, driven by gradients, is a common issue
across parameter regularization-based CIL methods (Lange,
van de Ven, and Tuytelaars 2023). From a gradient perspec-
tive, during initial updates on a new task, the parameters θ of
the student model fS (comprising the feature extractor and
fully connected layer for old classes) are still closely aligned
with the teacher model’s parameters θ∗ from the previous
task, leading to |∇LKD| ≈ 0. This motivates the develop-
ment of a novel mechanism to mitigate the forgetting.

It is clear that when the expanded fully connected layer for
new classes is included, the student’s parameters θ̂ will dif-
fer significantly from the teacher’s due to the additional neu-
rons required for classifying the new classes. Specifically,
as shown in Figure 2 (a), we modified the student model’s
probability calculation procedure to incorporate logits for
the new classes:

qi(x) =
ezi/τ∑O+N

j=1 ezj/τ
(5)

This led to the development of a new distillation mecha-
nism, referred to as ̂LwFKL (green line). As shown in Fig-
ure 2 (b), this mechanism significantly reduces temporary
forgetting, allowing almost all old knowledge from T0 to be
recovered in ̂LwFKL. Based on this finding, we can reason-
ably hypothesize:
Hypothesis 1. Without the interplay between old and new
classes, the KD mechanism fails to effectively mitigate for-
getting and recover knowledge.
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Confidence > 20% > 30% > 40% > 50% > 60% > 70% > 80% > 90%
Proportion > 100% > 96.4% > 88.6% > 78.4% > 67.6% > 57.6% > 47.6% > 35.6%

Table 1: Overconfident teacher predictions on task T1. The numbers indicate the proportions of new samples where the maxi-
mum classification probability exceeds the corresponding value.

Figure 3: Highly consistent confusion matrices of the
teacher and student in ̂LwFKL after learning task T1.

The Impact of Enforcing An Exact Match. Surprisingly,
as shown in Figure 2 (b), the accuracy on the new task T1 in̂LwFKL remains at 0. To explore the root causes, Figure 3
compares the confusion matrices for task T1 using the stu-
dent model after learning with that of the teacher model, re-
vealing that the student model exhibits extremely high con-
sistency with the teacher’s classifications. Meanwhile, Ta-
ble 1 shows the teacher model’s maximum classification
probabilities of new samples and the proportion of samples
exceeding various probability thresholds.

These observations suggest that the student’s prediction
probabilities for old classes mirror those of the teacher (i.e.,
∀i ∈ [1, O], q̂i(x) = qi(x)), resulting in a minimized LKD.
This implies that the student and teacher models share the
same mean and variance of logits, reflecting that the cur-
rent LKD enforces an exact match in both value range and
variance (Sun et al. 2024). This strict alignment hampers the
student’s ability to learn new knowledge in ̂LwFKL and lim-
its the recovery of old knowledge in LwFKL and LwFCE .
Therefore, combined with Hypothesis 1, we propose the fol-
lowing hypothesis:

Hypothesis 2. An ideal KD mechanism in CIL should bal-
ance learning and forgetting by considering the interplay
between old and new classes and allow a more relaxed
match between teacher and student predictions, thus main-
taining fairness between old and new classes.

Theoretical Foundation and Our Approach
Motivated by Hypothesis 1, we reconsidered what truly mat-
ters in the teacher’s output for CIL. During practical im-
plementation and inference, the key factor is the inter-class
semantic relations between logit values, as these ultimately
determine the final prediction results. Rather than enforcing
an exact match of logit values, we prioritize maintaining the
correct order of predictions

Traditionally, the distance metric d(·, ·) between the
teacher’s logits Ẑ(x) and the student’s logits Z(x) is mini-

mized to zero in vanilla KD, ensuring an exact match. How-
ever, instead of this strict alignment, we focus on preserving
the relational structure of the logits to maintain semantic in-
tegrity and accurate inference. A monotonic positive linear
transformation offers a straightforward yet effective map-
ping, remaining invariant under separate changes in scale
and shift for the logits. Our goal is to identify a transfor-
mation that upholds this property. To achieve this, we in-
troduce the widely used Z-score normalization Z(·) (Sahu
2015; Singh and Singh 2020; Sun et al. 2024) as a mono-
tonic positive linear transformation function to provide iso-
tonic mapping:

d(Z(Ẑ(x)),Z(Z(x))) = d

(
Ẑ(x)− µt

σt
,
Z(x)− µs

σs

)

= d

(
1

σt
Ẑ(x)− µt

σt
,
1

σs
Ẑ(x)− µs

σs

)

where the scaling factors σt and σs represent the standard
deviations of the data sets Ẑ(x) and Z(x), and the shifting
factors µt and µs represent their respective means. Z-score
normalization intrinsically guarantees that the normalized
logits have a mean of zero and a standard deviation of 1
by subtracting the data set mean from each data point and
dividing by the data set’s standard deviation.

These properties ensure that Z-score normalization
is a monotonic positive linear transformation, invariant
under separate changes in scale and shift, thus preserv-
ing isotonic semantic information.

Maintain Fairness between Old and New Classes
Based on Hypothesis 2 and the properties of Z-score nor-
malization, we propose a plug-and-play pre-process method
that employs a relaxed, semantically invariant match to cap-
ture intrinsic inter-class relations and ensures fairness be-
tween old and new classes. The Z-score normalization-
based inter-class distillation loss is formulated as:

Linter = LKL (q̂(x)∥q(x)) = τ2
O∑
i=1

q̂i(x) log

(
q̂i(x)

qi(x)

)
,

q̂i(x) =
eZ(Ẑ)i/τ∑O
j=1 e

Z(Ẑ)j/τ
, qi(x) =

eZ(Z)i/τ∑O+N
j=1 eZ(Z)j/τ

.

(6)

A Toy Example. Figure 5 presents a toy example com-
paring the vanilla logit-based KD mechanism in CIL with
our improved KD mechanism incorporating the pre-process
method. In this example, the old class logits of student S1
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Figure 4: Schematic diagram of our method.

Figure 5: A Toy Example. Our Z-score normalization pre-
process method ensures that the KD loss and CE loss no
longer conflict, allowing both to be optimized simultane-
ously for balanced learning and anti-forgetting.

are closer to the teacher’s in terms of value range and vari-
ance, while student S2 preserves the same semantic relation-
ships as the teacher. In vanilla KD, this exact match results
in student S1 achieving a much lower KD loss (i.e., LKL1 =
0.014) compared to student S2 (i.e., LKL2 = 0.131). How-
ever, the lower KD loss for S1 leads to a higher cross-
entropy loss LCE1 (0.668), indicating a limited ability to
learn new classes compared to S2 (LCE2

= 0.313). This
exact match enforced by vanilla KD creates a conflict be-
tween learning and anti-forgetting, as depicted in Figure 1,
contributing to recency bias and leading to a diminished ca-
pacity for acquiring new knowledge in ̂LwFKL.

In contrast, our proposed Z-score normalization pre-
process rescales the logits while preserving their semantic
relationships. With this semantically invariant match, stu-
dent S2 achieves a KD loss that is very close to zero and
correctly predicts new samples, resolving the learning limi-
tations observed in ̂LwFKL. Through the toy example, we
vividly demonstrate how our pre-process method maintains
fairness between old and new classes, ensuring balanced
learning and anti-forgetting.

Algorithm 1: Pseudo code of our method in a PyTorch-like
style.

def Z-score (logits):
mean = logits.mean(dim=1, keepdims=True)
stdv = logits.std(dim=1, keepdims=True)
return (logits - mean) / (1e-7 + stdv)

# O: Number of Old Classes
# N : Number of New Classes
# k: Batch Size
# Zs: Student Output Logits (shape: [k,O +N ])
# Ẑt: Teacher Output Logits (shape: [k,O])
# τ : Temperature Scalar
# α, β: Hyperparameters

# Calculate the Inter-Class Distillation Loss:
q̂t = F.softmax(Z-score(Ẑt) / τ )
qs = F.softmax(Z-score(Zs)[:,:O] / τ )
kld = F.kl div(log(qs), q̂t)
Linter = (kld.sum(1, keepdim=True)) * τ2).mean()

# Calculate the Intra-Class Distillation Loss:
q̂t = F.softmax(Z-score(Ẑt.t()) / τ )
qs = F.softmax(Z-score(Zs.t())[:O,:] / τ )
kld = F.kl div(log(qs), q̂t)
Lintra = (kld.sum(1, keepdim=True)) * τ2).mean()

# Calculate the Total Distillation Loss:
LKD = αLinter + βLintra

Maintain Fairness within Old Classes

Another benefit of our pre-process method is that after
applying Z-score normalization, the implicit information
within the teacher’s output probabilities—known as dark
knowledge—is more effectively transferred. As illustrated
in Table 1, the teacher model exhibits overconfidence in new
samples. For example, after applying the softmax function to
the teacher’s logits, it classified 35.6% of the new class sam-
ples as belonging to an old class with over 90% probability
(close to the one-hot prediction).

This overconfidence can hinder the effective transfer
of dark knowledge (Chi et al. 2023; Gao et al. 2024).
For instance, as shown in Figure 5, the teacher’s pre-
diction probabilities after applying the softmax func-

16767



Dataset CIFAR-100 ImageNet-Subset

Method
Split 5 Tasks Split 10 Tasks Half 6 Tasks Half 11 Tasks Split 5 Tasks Split 10 Tasks Half 6 Tasks Half 11 Tasks
FAA CAA FAA CAA FAA CAA FAA CAA FAA CAA FAA CAA FAA CAA FAA CAA

LwF 37.55 55.27 21.70 43.01 21.60 34.22 15.62 27.88 34.63 56.08 20.08 42.76 21.06 38.65 11.27 27.85
w/Linter 38.70 59.17 19.64 40.85 21.77 38.22 20.10 44.39 28.47 53.21 17.15 40.68 18.81 35.47 11.87 30.74
w/Linter + Lintra 46.09 62.33 22.81 46.66 26.36 48.08 22.80 47.33 34.96 59.14 19.17 44.60 21.46 42.39 14.58 38.17
Replay 48.49 64.05 43.76 61.30 46.80 57.14 44.78 54.54 51.42 66.75 44.88 62.91 51.49 62.95 50.45 59.33
w/Linter 52.65 66.64 46.77 62.49 51.50 62.20 46.26 57.31 52.73 67.97 45.22 63.07 53.76 65.47 52.21 61.12
w/Linter + Lintra 53.70 66.94 47.45 62.51 51.65 62.03 47.59 57.46 54.57 68.73 46.14 63.72 54.88 65.96 51.71 62.01
iCaRL 47.69 64.31 41.98 60.97 46.63 58.95 43.44 54.74 51.84 67.94 43.29 62.58 51.10 63.61 49.26 58.72
w/Linter 52.58 66.12 48.38 63.58 52.85 62.70 46.42 57.00 53.17 68.25 44.39 62.76 52.96 64.74 49.48 59.96
w/Linter + Lintra 52.50 66.47 48.08 63.76 52.78 63.40 46.77 57.43 53.86 68.77 44.39 62.68 53.08 65.35 50.39 60.62
BiC 48.21 65.46 40.22 61.99 45.81 63.30 37.37 53.87 59.83 68.18 41.12 61.53 54.52 68.89 45.62 59.92
w/Linter 58.59 67.60 51.48 64.52 58.18 68.42 42.65 60.53 59.29 68.05 48.92 63.65 63.41 72.99 46.38 63.72
w/Linter + Lintra 58.27 67.53 48.15 63.50 59.56 68.88 45.29 61.87 59.37 68.20 48.39 63.35 64.42 73.67 47.89 65.74
WA 53.86 64.97 48.23 62.21 55.60 65.22 51.98 62.72 51.73 64.72 45.67 60.05 53.87 66.73 50.38 62.78
w/Linter 57.05 65.40 52.55 60.40 54.85 67.15 53.73 66.15 52.53 63.28 45.14 58.74 56.59 68.13 49.73 63.40
w/Linter + Lintra 56.83 65.53 53.03 64.72 58.18 68.80 56.03 66.55 50.23 63.12 45.91 61.20 57.78 68.72 50.87 65.50
PODNet 49.08 62.96 36.78 55.22 59.03 68.99 55.62 66.36 55.85 70.06 42.83 61.25 68.08 76.38 65.40 74.94
w/Linter 50.20 63.71 40.44 56.91 61.94 70.57 57.11 67.60 57.39 71.05 44.14 62.70 70.20 77.75 66.53 75.52
w/Linter + Lintra 50.99 64.18 40.35 57.26 61.77 70.19 55.36 66.60 58.59 71.46 44.31 63.05 69.45 77.49 66.64 75.68
Average Improvement 5.58 2.66 4.53 2.28 5.81 5.59 4.17 6.19 1.05 0.95 1.74 1.25 3.49 2.73 1.62 4.03

Table 2: Standard KD techniques with and without our Linter and Lintra on different settings of CIFAR-100 and ImageNet-
Subset datasets. Best results - in bold.

tion are [0.149, 0.740, 0.111]. In contrast, after apply-
ing our pre-process method, these probabilities shift to
[0.225, 0.587, 0.188]. This adjustment mitigates the negative
effects of overconfidence, enabling a more effective transfer
of dark knowledge and further reducing forgetting.

However, as shown in the confusion matrix in Figure 3,
the teacher classified a significant portion of new class sam-
ples as a specific old class (highlighted in the red box),
potentially overemphasizing this old class while neglecting
others, leading to unfairness within old classes.

To address this, we propose intra-class relation distilla-
tion to further maintain fairness within old classes. This
approach captures the semantic similarities of multiple in-
stances to each old class (Huang et al. 2022). Given a spe-
cific old class o and k instances in each training batch, let
Ĉ(o) = (ĉ1, . . . , ĉk) and C(o) = (c1, . . . , ck) represent the
logits of old class o from the teacher and student models
across k instances, respectively. Similar to Equation 6, the
Z-score normalization-based intra-class distillation loss can
be formulated as:

Lintra = LKL (q̂(o)∥q(o)) = τ2
k∑

i=1

q̂i(o) log

(
q̂i(o)

qi(o)

)
,

q̂i(o) =
eZ(Ĉ)i/τ∑k
j=1 e

Z(Ĉ)j/τ
, qi(o) =

eZ(C)i/τ∑k
j=1 e

Z(C)j/τ
.

(7)

Finally, the overall loss can be defined as:

L = LCE + αLinter + βLintra (8)

where α and β are coefficients that control the weight of
inter-class and intra-class losses. Figure 4 illustrates the

Figure 6: Norms of the classifier’s weight vectors.

schematic diagram of our method and Algorithm 1 provides
the pseudo-code of our method in a PyTorch-like (Paszke
et al. 2019).

Visualized Analysis on Recency Bias. To visualize the
recency bias of different KD mechanisms, we calculated the
norms of the classifier weight vectors after learning the new
task T1 and plotted them in Figure 6. If the norms of the
weight vectors for new classes are larger, the output logits
for new classes may generally tend to be larger (Zhao et al.
2020). As shown in Figures 6 (a) and (b), the norms of the
weight vectors for new classes are significantly larger than
those for old classes, indicating severe recency bias.

After applying our inter-class loss, as shown in Figure 6
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Method
Split 5 Tasks Split 10 Tasks Half 6 Tasks Half 11 Tasks
FAA CAA FAA CAA FAA CAA FAA CAA

LwF 23.05 34.83 14.87 28.04 14.64 22.14 8.51 13.85
w/Linter + Lintra 28.20 40.04 15.77 31.36 20.92 34.17 9.97 18.76
Replay 18.80 34.93 17.53 26.60 9.95 20.79 7.39 15.57
w/Linter + Lintra 23.94 38.87 16.60 31.81 17.88 28.11 10.79 19.68
iCaRL 29.93 38.50 21.75 34.90 25.60 39.15 15.47 30.29
w/Linter + Lintra 33.96 42.30 20.96 36.17 28.47 42.32 20.96 36.68
BiC 15.72 31.32 8.17 23.95 8.65 20.26 6.24 14.71
w/Linter + Lintra 23.38 38.93 14.04 31.00 16.41 27.10 10.65 19.53
WA 28.75 41.11 14.51 31.28 15.46 32.62 11.79 27.34
w/Linter + Lintra 33.78 42.14 23.28 36.13 26.60 38.77 18.15 33.02
PODNet 18.34 31.38 10.64 24.31 23.98 39.37 16.77 31.16
w/Linter + Lintra 20.92 32.52 11.51 25.81 25.97 40.19 17.97 31.49
Average Improvement 4.93 3.79 2.45 3.87 6.33 6.06 3.72 4.37

Table 3: Standard KD techniques with and without our method on different settings of the TinyImageNet dataset.

Figure 7: Confusion matrices of different KD mechanisms
with five incremental phases on CIFAR-100.

(c), the recency bias is significantly reduced, with the aver-
age norm values of the old and new classes becoming much
closer (indicated by the blue and red dotted lines). Further-
more, in Figure 6 (d), when both our inter-class and intra-
class losses are applied, the dispersion of blue and red points
decreases noticeably, leading to nearly overlapping dotted
lines. These results vividly demonstrate the validity of our
empirical analysis and theoretical foundations, confirming
that our method effectively maintains fairness not only be-
tween old and new classes but also within old classes.

Experimental Results
Experimental Settings. To evaluate the effectiveness of
our method, we conducted experiments in both ‘train from
scratch’ and ‘train from half’ scenarios on three widely used
benchmarks: CIFAR-100 (Krizhevsky and Hinton 2009),
ImageNet-Subset (Hou et al. 2019), and TinyImageNet (Le
and Yang 2015). In the ‘train from scratch’ scenario, the
model is trained on an equal number of classes in each in-
cremental task, while in the ‘train from half’ scenario, the
model is trained on half the number of all classes in the first
task and an equal number of classes in each subsequent task.
Our implementation, based on PyTorch (Paszke et al. 2019)
and PYCIL (Zhou et al. 2023), ran on an NVIDIA 4090 us-
ing ResNet-18 (He et al. 2016) as the model architecture.
The models were trained with a batch size of 128 using SGD
with momentum.

Following standard CIL practices, we shuffled the class
order with a random seed of 1993 (Rebuffi et al. 2017; Zhou
et al. 2023). For evaluation, we employed two commonly
used metrics in CIL: Final Average Accuracy (FAA) and
Cumulative Average Accuracy (CAA) (Wang et al. 2024).
We define the average accuracy on all seen tasks as At af-
ter learning the task t. Upon completing all n tasks, we get
the FAA = An, and CAA is calculated by 1

n

∑n−1
i=0 Ai. FAA

highlights performance gaps between incremental learn-
ing and joint learning methods, and CAA reflects overall
historical performance. We applied our method on vari-
ous logit distillation-based CIL methods (i.e, LwF (Li and
Hoiem 2017), Replay, iCaRL (Rebuffi et al. 2017), BiC (Wu
et al. 2019), WA (Zhao et al. 2020)). Especially, in POD-
Net (Douillard et al. 2020), we replace the feature-based dis-
tillation with logit-based distillation.

Plug-and-Play Performance. Tables 2 presents a com-
prehensive plug-and-play analysis of various KD-based CIL
methods on the CIFAR-100 and ImageNet-Subset datasets.
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For the baseline methods, the KD weight is set to 1. When
using only Linter, the hyperparameters α and β are set to
1 and 0, respectively. To ensure a fair comparison without
affecting learning, when both Linter and Lintra are imple-
mented, α and β are each set to 1

2 .
As shown in the table, applying our inter-class loss signifi-

cantly enhances FAA and CAA across various scenarios and
task settings. Notably, our pre-process for calculating the
inter-class loss incurs no additional training costs. Further,
when combined with the intra-class loss without altering
the learning, overall performance is further enhanced, un-
derscoring the importance of intra-class relation distillation.
Average improvements demonstrate the effectiveness of our
method, with increases of 5.81% in FAA and 5.59% in CAA
in the Half 6 Tasks setting on the CIFAR-100 dataset. Addi-
tionally, as shown in Table 3, significant improvements were
also observed when our method was tested on the TinyIm-
ageNet dataset. These consistent improvements across var-
ious methods, settings, and datasets underscore the univer-
sality and robustness of our approach.

Visual Comparison. To provide a visual comparison,
we present the confusion matrices for LwFCE , LwFKL,
LwFKL with Linter, and LwFKL with Linter + Lintra in
the split 5 tasks setting on CIFAR-100. As illustrated in Fig-
ure 7, both LwFCE and LwFKL exhibit a clear classifica-
tion bias, favoring new classes. When the inter-class loss
Linter is applied, this bias is already noticeably reduced.
With the addition of the intra-class loss Lintra, the confu-
sion and bias are further minimized, demonstrating that our
method effectively achieves the goal of maintaining fairness
between old and new classes.

Ablation Study on Hyperparameters. In Equation 8, the
hyperparameters α and β control the weights of Linter and
Lintra. We conducted experiments on CIFAR-100 based on
the LwF method to explore the effects of varying these hy-
perparameters across different incremental settings. As de-
tailed in Table 4, we tested various values of α and β to
systematically evaluate their impact on performance.

The results reveal that: 1) Without Linter (α = 0), per-
formance declines sharply, approaching the level of finetun-
ing without anti-forgetting measures, underscoring the im-
portance of Linter. 2) When α > β, overall performance
improves, suggesting that prioritizing inter-class loss yields
better outcomes. 3) All configurations with α ̸= 0 outper-
form the baseline LwF, demonstrating the robustness of our
method across different hyperparameter settings. We rec-
ommend setting the cross-entropy loss weight near 1, with
an inter-class to intra-class loss ratio around 3:1, generally
achieving optimal or near-optimal performance.

Ablation Study on Batch Size. The training batch size
k determines the dimension of the model’s predictions
for each old class, impacting intra-class distillation perfor-
mance. In Table 5, we conducted experiments on CIFAR-
100 based on the LwF method across different incremen-
tal settings, with both Linter and Lintra set to 1. The results
show that increasing batch size enhances the model’s abil-
ity to mitigate forgetting, as it allows the intra-class rela-

Value Split 5 Tasks Split 10 Tasks Half 6 Tasks Half 11 Tasks
α β FMM CAA FMM CAA FMM CAA FMM CAA
0 2 17.03 39.55 9.02 28.33 9.84 26.02 6.68 21.93
2 0 47.51 62.27 23.34 47.21 27.66 47.64 25.44 50.05
1 1 46.09 62.33 22.81 46.66 26.36 48.08 22.80 47.33

2/3 4/3 43.21 60.87 21.58 45.05 25.34 46.55 20.09 43.96
4/3 2/3 46.74 61.90 23.33 46.20 27.88 49.44 23.26 48.70
1/2 3/2 38.70 59.34 20.40 43.88 24.07 44.38 19.09 41.73
3/2 1/2 47.02 62.10 24.04 45.96 29.10 50.47 25.31 50.07

Table 4: Performance across different hyperparameter ratios.

Batch Size
Split 5 Tasks Split 10 Tasks Half 6 Tasks Half 11 Tasks

FMM CAA FMM CAA FMM CAA FMM CAA
32 35.66 57.55 22.52 48.36 25.95 41.14 12.85 26.31
64 40.43 60.37 24.37 48.76 29.28 48.35 11.50 25.14

128 46.09 62.33 22.81 46.66 26.36 48.08 22.40 47.34
256 44.20 60.11 30.69 49.41 51.71 64.77 30.18 54.20

Table 5: Performance across various batch sizes.

tion to capture more instance relationships. Notably, when
the batch size reaches 256, the performance improvement in
the train-from-half scenario is particularly impressive, high-
lighting the importance of the intra-class distillation and the
benefits of larger batch sizes.

Conclusion
In this work, we reevaluated the overlooked sub-optimality
of logit-based KD in CIL, particularly its conflict with cross-
entropy loss, which exacerbates recency bias. We identified
the rigid exact match of logits between student and teacher
models as a key factor in this issue. To address this, we in-
troduced a novel pre-process method that normalizes logits
across all classes before distillation. This approach preserves
inter-class relations and mitigates the conflict between KD
and cross-entropy loss, ensuring fairness between old and
new classes without incurring additional training costs. Ad-
ditionally, we addressed the overconfidence in teacher pre-
dictions, which hampers the transfer of dark knowledge, by
incorporating intra-class relation distillation. This ensures
fairness within old classes and further reduces the risk of for-
getting. Extensive experiments across multiple CIL bench-
marks confirm that our method consistently enhances the
performance of existing KD-based approaches, demonstrat-
ing its robustness and broad applicability.
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Castro, F. M.; Marı́n-Jiménez, M. J.; Guil, N.; Schmid, C.;
and Alahari, K. 2018. End-to-end incremental learning. In

16770



Proceedings of the European conference on computer vi-
sion, 233–248.
Chi, Z.; Zheng, T.; Li, H.; Yang, Z.; Wu, B.; Lin, B.; and
Cai, D. 2023. Normkd: Normalized logits for knowledge
distillation. arXiv preprint arXiv:2308.00520.
Dhar, P.; Singh, R. V.; Peng, K.-C.; Wu, Z.; and Chellappa,
R. 2019. Learning without memorizing. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 5138–5146.
Douillard, A.; Cord, M.; Ollion, C.; Robert, T.; and Valle, E.
2020. PODNet: Pooled Outputs Distillation for Small-Tasks
Incremental Learning. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 86–102.
Du, S.; You, S.; Li, X.; Wu, J.; Wang, F.; Qian, C.; and
Zhang, C. 2020. Agree to disagree: Adaptive ensemble
knowledge distillation in gradient space. advances in neural
information processing systems, 33: 12345–12355.
Gao, Z.; Xu, K.; Zhuang, H.; Liu, L.; Mao, X.; Ding, B.;
Feng, D.; and Wang, H. 2024. Less confidence, less for-
getting: Learning with a humbler teacher in exemplar-free
Class-Incremental learning. Neural Networks, 179: 106513.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hinton, G.; Vinyals, O.; Dean, J.; et al. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7).
Hou, S.; Pan, X.; Loy, C. C.; Wang, Z.; and Lin, D. 2019.
Learning a Unified Classifier Incrementally via Rebalanc-
ing. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 831–839.
Huang, T.; You, S.; Wang, F.; Qian, C.; and Xu, C. 2022.
Knowledge distillation from a stronger teacher. Advances in
Neural Information Processing Systems, 35: 33716–33727.
Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Handbook of Systemic Au-
toimmune Diseases, 1(4).
Lange, M. D.; van de Ven, G. M.; and Tuytelaars, T. 2023.
Continual evaluation for lifelong learning: Identifying the
stability gap. In The Eleventh International Conference on
Learning Representations.
Le, Y.; and Yang, X. 2015. Tiny imagenet visual recognition
challenge. CS 231N, 7(7): 3.
Li, Z.; and Hoiem, D. 2017. Learning without forgetting.
IEEE transactions on pattern analysis and machine intelli-
gence, 40(12): 2935–2947.
Liu, Y.; Li, Y.; Schiele, B.; and Sun, Q. 2024. Wakening
Past Concepts without Past Data: Class-Incremental Learn-
ing from Online Placebos. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
2226–2235.
Masana, M.; Liu, X.; Twardowski, B.; Menta, M.; Bag-
danov, A. D.; and van de Weijer, J. 2022. Class-incremental
learning: survey and performance evaluation on image clas-
sification. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence.

McCloskey, M.; and Cohen, N. J. 1989. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, 109–165. Elsevier.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information pro-
cessing systems, 32.
Rebuffi, S.-A.; Kolesnikov, A.; Sperl, G.; and Lampert, C. H.
2017. icarl: Incremental classifier and representation learn-
ing. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR), 2001–2010.
Sahu, K. K. 2015. Normalization: A preprocessing stage.
arXiv preprint arXiv:1503.06462.
Singh, D.; and Singh, B. 2020. Investigating the impact of
data normalization on classification performance. Applied
Soft Computing, 97: 105524.
Sun, S.; Ren, W.; Li, J.; Wang, R.; and Cao, X. 2024. Logit
Standardization in Knowledge Distillation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 15731–15740.
Tung, F.; and Mori, G. 2019. Similarity-preserving knowl-
edge distillation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 1365–1374.
Wang, L.; Zhang, X.; Su, H.; and Zhu, J. 2024. A Compre-
hensive Survey of Continual Learning: Theory, Method and
Application. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 46(8): 5362–5383.
Wu, Y.; Chen, Y.; Wang, L.; Ye, Y.; Liu, Z.; Guo, Y.; and Fu,
Y. 2019. Large scale incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 374–382.
Zhao, B.; Xiao, X.; Gan, G.; Zhang, B.; and Xia, S.-T. 2020.
Maintaining discrimination and fairness in class incremental
learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 13208–
13217.
Zhou, D.-W.; Wang, F.-Y.; Ye, H.-J.; and Zhan, D.-C. 2023.
PyCIL: a Python toolbox for class-incremental learning.
SCIENCE CHINA Information Sciences, 66(9): 197101–.
Zhu, F.; Cheng, Z.; Zhang, X.-y.; and Liu, C.-l. 2021a. Class-
Incremental Learning via Dual Augmentation. In Ranzato,
M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.; and Vaughan,
J. W., eds., Advances in Neural Information Processing Sys-
tems, volume 34, 14306–14318.
Zhu, F.; Zhang, X.-Y.; Wang, C.; Yin, F.; and Liu, C.-L.
2021b. Prototype augmentation and self-supervision for in-
cremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 5871–
5880.
Zhu, K.; Zhai, W.; Cao, Y.; Luo, J.; and Zha, Z.-J. 2021c.
Self-sustaining representation expansion for non-exemplar
class-incremental learning. In Advances in Neural Informa-
tion Processing Systems, 14306–14318.

16771


