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Background

Task Definition: 3D Reconstruction from input 2D images
Depth Estimation, Camera Parameter, 3D Tracking ...

method
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Traditional Methods: Feature matching, polar geometry, bundle adjustment...

Time consuming, not end-to-end...

Estimated depth



Background&Motivation

Recent Methods: Solve specific task with the help of powerful networks
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Motivation: Train a powerful network to solve all tasks with a single forward pass



Pipeline

Task Definition: Input 2D images, directly output camera parameters, depth maps, point maps
and features for tracking

Challenges:

1. How to align point maps of each image?
2. How to deal with various number of input images?
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Principle design

1. Set the first input image as the reference image.
2. Introduce camera token to estimate camera parameters.

3. Introduce register token to reduce influence of global tokens.

4. Introduce two set of camera and register tokens to distinguish the first image as reference frame.
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Reference

1. Vit Needs Registers 2. Vit for dense prediction
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Experiments

Methods RelOK (unseen) CO3Dv2 Time
1. Camera Pose Estimation AUCORNT | AUCeT

Colmap+SPSG [92] 45.2 253 ~ 15s
PixSfM [66] 49.4 30.1 > 20s
PoseDiff [124] 48.0 66.5 ~Ts
DUSt3R [129] 67.7 76.7 ~Ts
MASt3R [62] 76.4 81.8 ~ 9s
VGGSIM v2 [125] 78.9 834 ~ 10s
MV-DUSt3R [111] ¥ 71.3 69.5 ~ 0.6s
CUT3R[127] ¥ 75.3 82.8 ~ 0.6s
FLARE [156] 78.8 83.3 ~ 0.5s
Fast3R [141] ¥ 72.7 82.5 ~ 0.2s
Ours (Feed-Forward) 85.3 88.2 ~ 0.2s
Ours (with BA) 93.5 91.8 ~ 1.8s

Table 1. Camera Pose Estimation on RealEstate10K [161] and
CO3Dv2 [88] with 10 random frames. All metrics the higher the
better. None of the methods were trained on the Re10K dataset.
Runtime were measured using one H100 GPU. Methods marked
with ¥ represent concurrent work.

2. Multi-view depth prediction Known GT
Method Acc.] Comp.] Overall]
camera
v Gipuma [40] 0.283 0.873 0.578
v MVSNet [144] 0.396 0.527 0.462
v CIDER [139] 0.417 0.437 0.427
v PatchmatchNet [121]  0.427 0.377 0.417
v MASI3R [62] 0.403 0.344 0.374
v GeoMVSNet [157] 0.331 0.259 0.295
X DUSt3R [129] 2.677 0.805 1.741
X Ours 0.389 0.374 0.382

Table 2. Dense MVS Estimation on the DTU [51] Dataset.
Methods operating with known ground-truth camera are in the top
part of the table, while the bottom part contains the methods that
do not know the ground-truth camera.



Experiments

3. Point map estimation

4. Dynamic point tracking

Methods Acc.l Comp.] Overall] Time

DUSt3R 1.167 0.842 1.005 ~Ts

MASt3R 0.968 0.684 0.826 ~ 9s
Ours (Point) 0.901 0.518 0.709 ~ 0.2s

Ours (Depth + Cam)  0.873 0.482 0.677 ~ 0.2s

Table 3. Point Map Estimation on ETH3D [97]. DUSt3R and
MASt3R use global alignment while ours is feed-forward and,
hence, much faster. The row Qurs (Point) indicates the results
using the point map head directly, while Ours (Depth + Cam) de-
notes constructing point clouds from the depth map head com-
bined with the camera head.
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TAPTR [63] 49.0 64.4 85.2 60.8 76.2 87.0 63.0 76.1 91.1

LocoTrack [13] 52.9 66.8 85.3 69.7 83.2 89.5 62.9 75.3 87.2
BootsTAPIR [26] 54.6 68.4 86.5 70.8 83.0 89.9 61.4 73.6 88.7

CoTracker [56] 49.6 64.3 83.3 67.4 78.9 85.2 61.8 76.1 88.3
CoTracker + Ours 57.2 69.0 88.9 72.1 84.0 91.6 64.7 77.5 914

Table 8. Dynamic Point Tracking Results on the TAP-Vid
benchmarks. Although our model was not designed for dynamic
scenes, simply fine-tuning CoTracker with our pretrained weights
significantly enhances performance, demonstrating the robustness
and effectiveness of our learned features.



Ablations

1. Attention structure

Global Frame
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2. Multi-task training

ETH3D Dataset Acc.l Comp.] Overall]
Cross-Attention 1.287 0.835 1.061
Global Self-Attention Only | 1.032 0.621 0.827
Alternating-Attention 0.901 0.518 0.709
W. Lcamera ~ W. Ldepth ~ W. Lgack  Acc.l  Comp.]  Overall]
X v v 1.042 0.627 0.834
v X v 0.920 0.534 0.727
v v X 0.976 0.603 0.790
v v v 0.901 0.518 0.709




