Seminar

2025.08.22 Nanxing Hu

DeepEyes: Incentivizing "Thinking with Images" via Reinforcement Learning

Ziwei Zheng^{1,2*}, Michael Yang^{1*}, Jack Hong^{1*}, Chenxiao Zhao^{1*†}, Guohai Xu^{1‡}, Le Yang^{2‡}, Chao Shen², XingYu¹

¹Xiaohongshu Inc., ² Xi'an Jiaotong University * Equal contribution, Random order † Main Code Contributor † Corresponding Author

Project Homepage

{chenxiao2, xuguohai}@xiaohongshu.com, yangle15@xjtu.edu.cn, ziwei.zheng@stu.xjtu.edu.cn, {yangminghao199,jaaackhong}@gmail.com

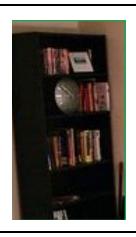
Setting Clarification

Setting: (high resolution) image understanding by VLM

Example:

Q: Is the clock to the left of the laptop?

A: ???????

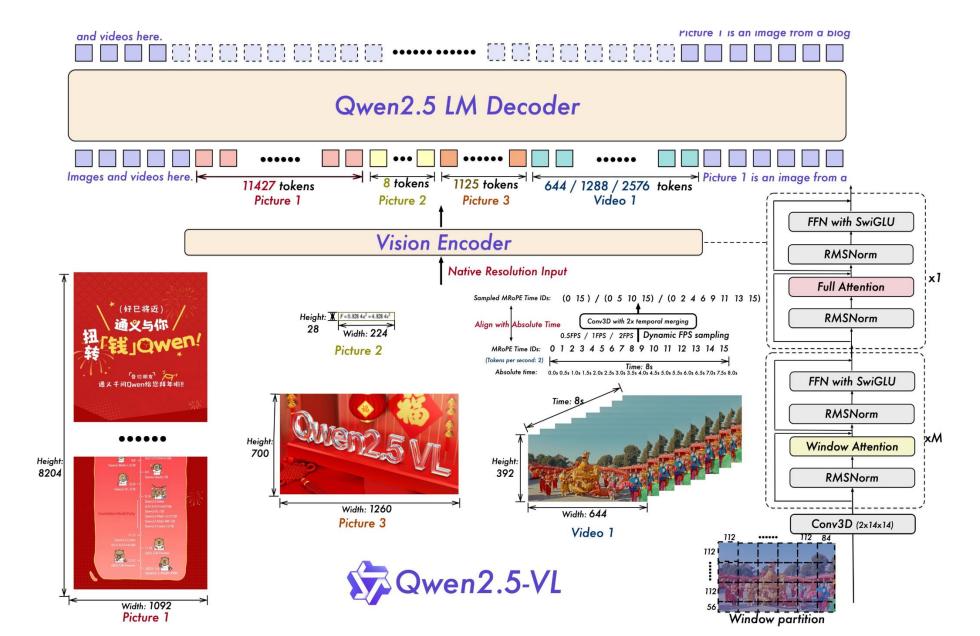


A: Yes!

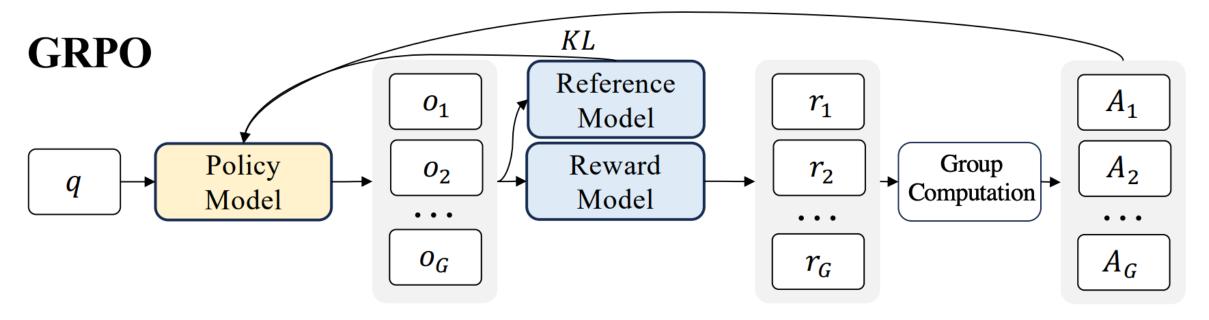
If we can make VLM recall local visual information in the reasoning process, the reasoning ability will be improved.

Approach: Reinforcement Learning

Preliminary: VLM



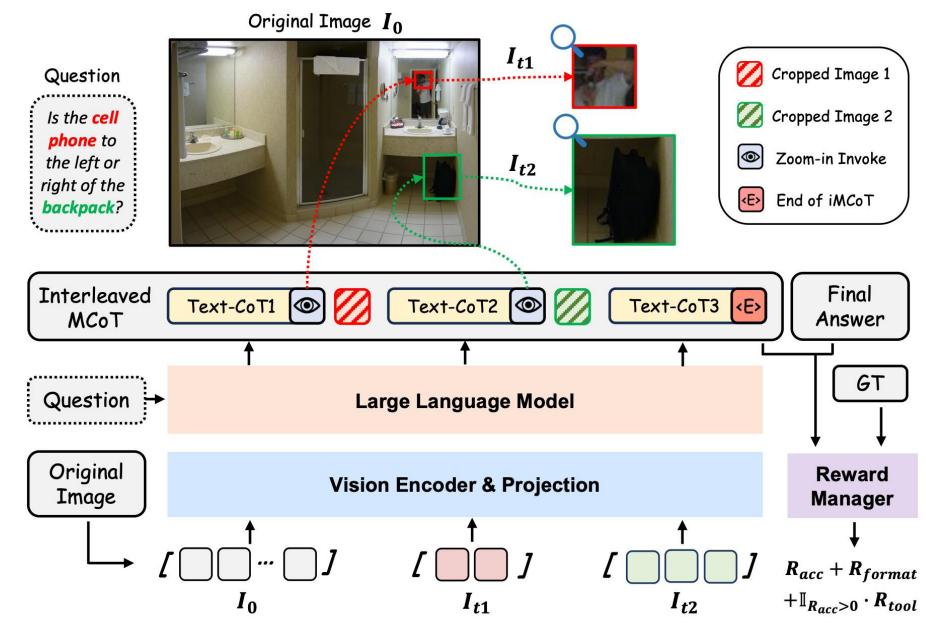
Preliminary: GRPO



$$\hat{A}_{i,t} = \widetilde{r}_i = \frac{r_i - \text{mean}(\mathbf{r})}{\text{std}(\mathbf{r})},$$

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}[q \sim P(Q), \{o_{i}\}_{i=1}^{G} \sim \pi_{\theta_{old}}(O|q)]
\frac{1}{G} \sum_{i=1}^{G} \frac{1}{|o_{i}|} \sum_{t=1}^{|o_{i}|} \left\{ \min \left[\frac{\pi_{\theta}(o_{i,t}|q, o_{i,< t})}{\pi_{\theta_{old}}(o_{i,t}|q, o_{i,< t})} \hat{A}_{i,t}, \operatorname{clip}\left(\frac{\pi_{\theta}(o_{i,t}|q, o_{i,< t})}{\pi_{\theta_{old}}(o_{i,t}|q, o_{i,< t})}, 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_{i,t} \right] - \beta \mathbb{D}_{KL} \left[\pi_{\theta} || \pi_{ref} \right] \right\},$$
(3)

Pipeline

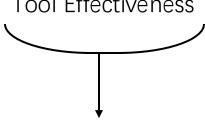


Data Construction

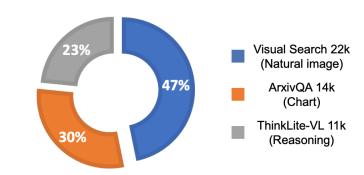
Principle:

- Diverse Tasks and Image Distribution
- Reasoning Ability Enhancement

Tool Effectiveness



Data Collection:



fine-grained data, chart data, and reason data.

Data Selection:

Managing Difficulties: generate 8 responses per question excluded as they are either too easy or too hard.

Facilitating Tool Integration: select instances achieves correct results when utilizing ground-truth crop regions.

Reward design

$$R(\tau) = R_{\text{acc}}(\tau) + R_{\text{format}}(\tau) + \mathbb{I}_{R_{\text{acc}}(\tau) > 0} \cdot R_{\text{tool}}(\tau),$$

 $R_{acc}(\tau)$: accuracy reward assesses whether the final answer is correct.

 $R_{format}(\tau)$: formatting reward penalizes poorly structured outputs.

 $R_{tool}(\tau)$: Tool usage bonus is awarded only when the model produces a correct answer and invokes at least one external perception tool during the trajectory

Experiment results

Model	БЭБ	Param		/* Bench [41]	HR	-Bench	4K [59]	HR-	Bench 8	K [59]
Model	E2E	Size	Attr	Spatial	Overall	FSP	FCP	Overall	FSP	FCP	Overall
GPT-4o [60]	√	-	-	-	66.0	70.0	48.0	59.0	62.0	49.0	55.5
o3 [8]	✓	-	-	-	95.7	-	-	-	-	-	-
SEAL [41]	Х	7B	74.8	76.3	75.4	-	_	-	_	-	-
DyFo [44]	X	7B	80.0	82.9	81.2	-	-	-	-	-	-
ZoomEye [61]	X	7B	93.9	85.5	90.6	84.3	55.0	69.6	88.5	50.0	69.3
LLaVA-OneVision [62]	1	7B	75.7	75.0	75.4	72.0	54.0	63.0	67.3	52.3	59.8
Qwen2.5-VL* [58]	✓	7B	73.9	67.1	71.2	85.2	52.2	68.8	78.8	51.8	65.3
Qwen2.5-VL* [58]	✓	32B	87.8	88.1	87.9	89.8	58.0	73.9	84.5	56.3	70.4
DeepEyes	/	7B	91.3	88.2	90.1	91.3	59.0	75.1	86.8	58.5	72.6
Δ (vs Qwen2.5-VL 7B)	-	-	+17.4	+21.1	+18.9	+6.1	+6.8	+6.3	+10.0	+6.8	+7.3

High-Resolution Benchmarks

Grounding and Hallucination Benchmarks

Model	Param Size	refCOCO	refCOCO+	refCOCOg	ReasonSeg	Adversaria	POP l Popular	E Random	Overall
LLaVA-OneVision [62]	7B	-	-	-	-	-	-	-	88.4
Qwen2.5-VL [58]	7B	90.0	84.2	87.2	-	-	-	-	-
Qwen2.5-VL* [58]	7B	89.1	82.6	86.1	68.3	85.9	86.5	87.2	85.9
DeepEyes Δ (vs Qwen2.5-VL 7B)	7B -	89.8 +0.7	83.6 +1.0	86.7 +0.6	68.6 +0.3	84.0 -1.9	87.5 +1.0	91.8 +4.6	87.7 +1.8

Model	Param	Math	Math	Math	We	Dyna	Logic
	Size	Vista [64]	Verse [65]	Vision [66]	Math [67]	Math [68]	Vista [69]
LLaVA-OneVision [62]	7B	58.6 [†]	19.3 [†]	18.3 [†]	20.9†	-	33.3 [†]
Qwen2.5-VL [58]	7B	68.2	49.2	25.1	35.2 [†]	53.3	44.1 [†]
Qwen2.5-VL* [58]	7B	68.3	45.6	25.6	34.6		45.9
DeepEyes	7B	70.1	47.3	26.6	38.9	55.0	47.7
Δ (vs Qwen2.5-VL 7B)	-	+1.9	+1.7	+1.0	+4.3	+1.7	+1.8

Multimodal Reasoning Benchmarks

Ablations

Table 4: **Ablation Study on iMCoT.** We compare the results of RL training using text-only CoT and iMCoT on the same datasets.

Madal		V* Bend	ch	H	IR-Benc	h 4K	HR-Bench 8K			
Model	Attr	Spatial	Overall	FSP	FCP	Overall	FSP	FCP	Overall	
Qwen2.5-VL [58]	73.9	67.1	71.2	85.2	52.2	68.8	78.8	51.8	65.3	
RL w. Text-only CoT	90.4	85.5	88.5	92.3	58.5	75.4	69.3	52.3	60.8	
DeepEyes	91.3	88.2	90.1	91.3	59.0	75.1	86.8	58.5	72.6	

Multi-modal CoT make a difference

Table 5: **Impact of Training Data.** Fine represents the fine-grained data. HR denotes HR-Bench. Row #0 is the origin score of Qwen2.5-VL 7B.

#	Fine	Reason	Chart				Basic VL Ca ReasonSeg	Basic VL Capability ReasonSeg POPE		oning MathVerse
0	<u> </u>			71.2	68.8	65.3	68.3	85.9	68.2	45.6
1	1			86.9	68.9	67.3	69.0	86.6	67.0	42.9
2 3 4 5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	√ √	<i>J</i>	91.6 91.6 90.1 90.1	74.1 73.8 74.6 75.1	71.0 70.5 74.6 72.6	69.1 68.6 68.5 68.6	88.1 88.8 87.9 87.7	64.7 67.7 64.6 70.1	41.3 43.8 38.1 47.3

- data selection is necessary
- reasoning data is necessary for maintain reasoning ability
- Chart data can benefit the Math problem

#1 denote training with unfiltered data

Reinforcement Learning Tuning for VideoLLMs: Reward Design and Data Efficiency

Hongyu Li^{1*}, Songhao Han^{1*}, Yue Liao^{2*†}, Junfeng Luo³, Jialin Gao³, Shuicheng Yan², Si Liu^{1‡}

¹ BUAA ² NUS ³ Meituan

Setting Clarification

Setting: Reinforcement learning for video-specific reasoning capabilities of MLLMs

Discrete Reward in VideoQA

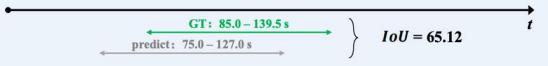
What are these people chasing in these scene transitions?

- (A) The man inside the car
- (B) A drone in the sky
- (C) A woman on the road
- (D) A tree in the grass

<think> The subjects travel from a paved highway ... As they move into
open grassland, a drone appears overhead. At a lakeside, ... continuous
human-computer interaction for aerial surveillance.

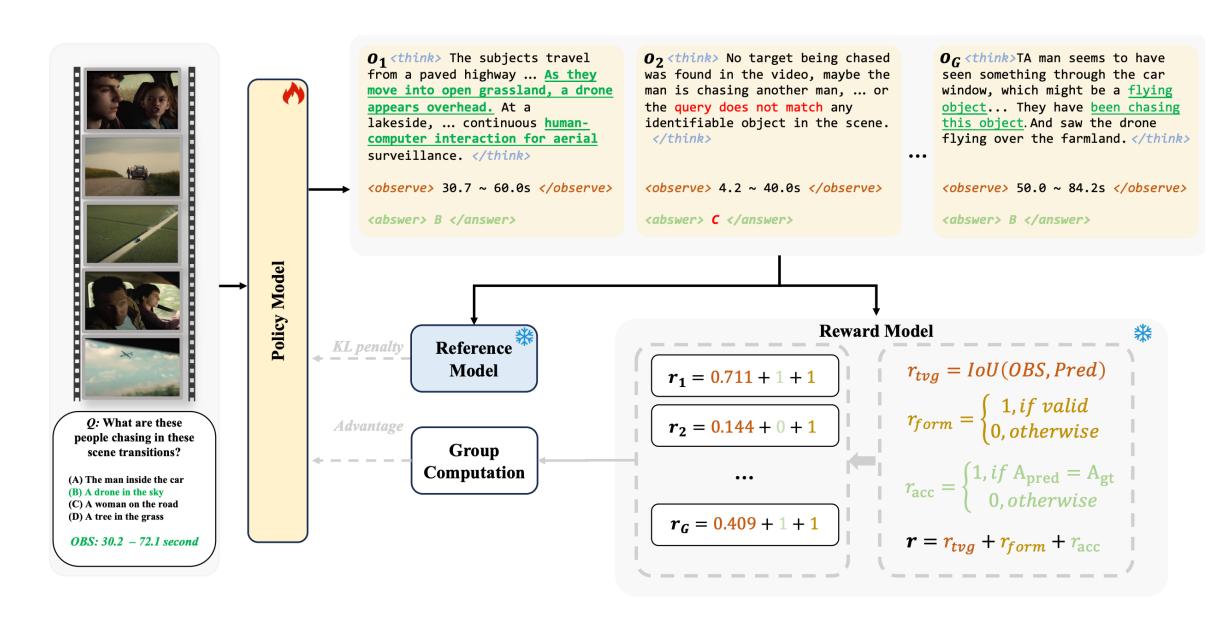
Continuous Reward in Temporal Grounding

When does the vehicle drive in the cornfield?



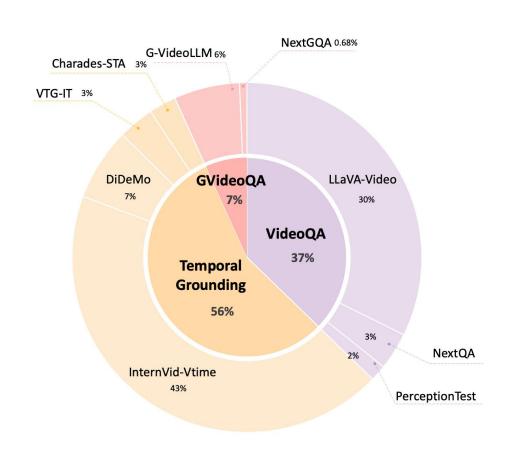
<think> The subjects depart from a rural road and drive into expansive
cornfields, ... As the vehicle speeds through the crops, an aircraft ...
The vehicle eventually emerges into open terrain ... </think>

Pipeline

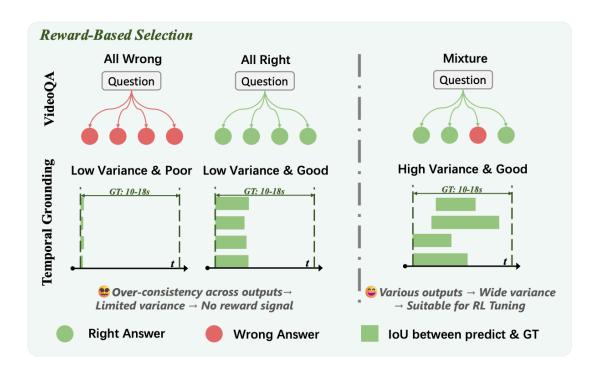


Data Construction

Data construction:



Data Selection:



VQA:

Easy if
$$c \ge \tau_{\rm easy}$$
, Hard if $c \le \tau_{\rm hard}$, otherwise Medium, $\tau_{easy} = 1$; $\tau_{hard} = 7$

VTG:

$$\Delta_{\text{IoU}} = \max_{i} \text{IoU}_{i} - \text{mean}_{i}(\text{IoU}_{i}), \qquad \Delta_{IoU} = 0.3$$

Reward design

Multi-Choice VideoQA (MC-QA):

$$R_{\rm mc} = R_{\rm format} + R_{\rm acc}$$
,

Temporal Video Grounding (TVG):

$$R_{\text{tvg}} = R_{\text{format}} + R_{\text{IoU}},$$

Grounded VideoQA (GQA):

$$R_{
m gqa} = R_{
m format} + rac{1}{2}(R_{
m acc} + R_{
m IoU}),$$

Experiment results

	Tempora	ıl Video	Grounding	Ţ	General Video	QA	Reasoning QA Grounded QA				
Method	Charades	ANet	ANet-RTL	MVBench	n TempCompass	VideoMME	MMVU	Next	tGQA		
	mIoU	mIoU	mIoU	Avg	Avg	Avg (wo sub)	Avg	mIoU	acc		
General VideoLLM											
LLaMA-VID[18]	-	-	-	41.9	45.6	-	-	-	-		
VideoLLaMA2[3]	-	-	-	54.6	-	47.9	44.8	-	-		
LongVA-7B[39]	-	-	-	-	56.9	52.6	-	-	-		
Video-UTR-7B[35]	-	-	-	58.8	59.7	52.6	-	-	-		
LLaVA-OV-7B[14]	-	-	-	56.7	-	58.2	49.2	_	-		
Kangeroo-7B[19]	_	-	-	61.1	62.5	56.0	_	_	-		
			GRPO-	based Met	hod and Baselin	e					
Qwen-VL-2.5[2]	28.0	24.0	6.0	65.3	70.9	56.1	61.3	20.2	77.2		
Qwen-VL-2.5-SFT	43.0	24.3	18.1	62.0	68.7	49.6	52.5	28.3	70.6		
Video-R1[4]	-	-	-	62.7	72.6	57.4	64.2	-	-		
Temporal-RLT (ours)	57.0	39.0	27.6	68.1	73.3	57.6	65.0	37.3	78.7		

Ablations

Table 4: Ablation Studies: Video QA and TVG Data Selection.

Easy: Middle: Hard		General VideoQ	A	Reasoning QA	Λ	Charades-STA					
	MVBench	TempCompass	VideoMME	MMVU	$\Delta_{ m IoU}$	Recall@0.3	Recall@0.5	Recall@0.7	mIoU		
4:4:2	64.3	70.0	52.8	59.5		78.2	63.9	37.4	54.7		
2:4:4	65.9	70.3	55.9	63.0	0.1	78.0	64.8	38.9	54.9		
2:6:2 1:8:1	67.2 68.1	71.3 73.4	56.8 57.1	62.1 63.4	0.2	78.8	63.7	38.5	55.0		
0:10:0	68.1	72.5	58.6	63.1	0.3	78.6	64.5	39.9	55.5		

(a) Ablation for Video QA Data Selection

(b) Ablation for TVG Data Selection

Diversity and training efficacy data makes a difference.

Table 5: Temporal Video Grounding OOD Evaluation.

Tuning Type		Charad	es-STA			Activi	tyNet			ActivityNet-RTL			
	R@0.3	R@0.5	R@0.7	mIoU	R@0.3	R@0.5	R@0.7	mIoU	R@0.3	R@0.5	R@0.7	mIoU	
	42.4	29.8	14.0	28.0	34.4	22.5	11.6	24.0	7.9	2.6	2.9	6.0	
SFT	73.9	61.6	38.5	52.8	33.4	18.9	9.0	23.1	24.0	14.8	7.4	17.8	
RLT	80.2	68.3	44.5	57.9	56.9	38.4	20.2	39.1	40.2	22.7	10.9	26.3	

only trained on Charades-STA dataset

RLT performs significantly better than SFT on OOD task.